Modeling DNAPL Depletion for a Well-Characterized Source Zone

by Grant R. Carey, Ph.D.

Porewater Solutions, Ottawa, Ontario, Canada

NAPL Pool (Free Phase)

NAPL Pools

- Above low-K soil
- Horizontal NAPL layer
- Large mass

Residual NAPL (Ganglia)

DNAPL Ganglia (singlets)

Residual NAPL

- Small
- Discontinuous
- Immobile

Source: Schwille, 1988

Mass Discharge Trends

Fresh Source

Mass Discharge Trends

Aged Source

Typical source zone mass discharge = 1 to 100 kg/year

NAPL Depletion Model Uses

- Compare relative timeframes natural and enhanced NAPL dissolution alternatives
 - Relative benefit of enhanced diss.
- Improved understanding
- Focus site investigation key data gaps
- Check CSM forensic evaluation of NAPL architecture
- Input for plume response model (REMCHLOR, MT3DMS)

Connecticut Site (Chapman & Parker, 2005)

Case Study: Beth Parker et al. (2003) CT Site

- Connecticut site
- Large DNAPL source zone
 - Bottom of sand aquifer, above aquitard
- Multiple lines of evidence
 - Visual inspection
 - Soil samples close vertical spacing
 - Partitioning threshold, S_n, & layer thickness
 - Dye tests (Sudan IV)
 - Drainable core technique → Pool thickness

1996/97 Source Zone

DNAPL Sub-Zones

h = median thickness

h=7.5 cm

h=5 cm

Type 2

Res.

h=10 cm

Type 1

Res.

Pool

Typical DNAPL Architecture

Typical DNAPL Architecture

NAPL Depletion Model (NDM): Mass Discharge-Based

NAPL Depletion Model (NDM): Mass Discharge-Based

Empirical Relationship (K in m/s)	
τ = 0.60 $K^{0.030}$	(i)
$\theta_t = 0.30 \text{ K}^{-0.026}$	(ii)
θ_e = 0.41 K ^{0.064} , K \leq 1x10 ⁻² m/s	(iii)
$\theta_e = (0.29 \text{ K}^{-0.026}) - 0.03, \text{ K} > 1 \times 10^{-2} \text{ m/s}$	(iv)
$\alpha_{TV} = 0.08 \text{ K}^{-0.16}, v \le v_c$	(v)
$\alpha_{TV_{_}NE} = 0.08 \text{ K}^{-0.16} (v_c/v)^{0.5}, v > v_c$	(vi)
$\alpha_{aw} = 0.112 (100 K)^{0.211}$	(vii)
$n = 13.14 (100 \text{ K})^{0.246}$ K $\geq 1 \times 10-4 \text{ m/s}$	(viii)
$S_{wr} = 0.015 (100 K)^{-0.218}$	(ix)

Carey et al. (2015a,b,c)

Model Validation Goals

1. DNAPL mass in simplified source zone consistent with Chapman and Parker (2005).

2. Initial (1994) Mass discharge – estimated to be 360 to 720 kg/y.

3. Mass discharge decline half-life – estimated to be about 10 years (Chapman and Parker, 2005).

NDM Simulation Results

- Simulated DNAPL mass = 4,250 kg
 - Chapman and Parker (2005) estimated 5,000 to 20,000 kg
 - Our simplified source zone ignored several large areas with thicker DNAPL
 - Limited contribution to overall mass discharge
 - Simulated DNAPL mass consistent with observed on that basis

NDM Simulation Results

- Simulated DNAPL mass = 4,250 kg
 - Chapman and Parker (2005) estimated 5,000 to 20,000 kg
 - Our simplified source zone ignored several large areas with thicker DNAPL
 - Limited contribution to overall mass discharge
 - Simulated DNAPL mass consistent with observed on that basis
- Simulated 1994 Mass Discharge

Modeled vs. Estimated Md Half-Life

Relative Depletion Timeframes

DNAPL Architecture Sensitivity Analysis

- Varied NAPL architecture and re-ran model any other scenarios that match <u>1994 Md</u> and <u>half-life</u>?
 - Length / 2
 - Width / 2
 - Uniform thickness of 4", 8", or 1 ft
 - a) All pooled DNAPL; or
 - b) All residual DNAPL
 - Zero flux through all DNAPL sub-zones
 - Type 1 residual zone is suspended above pool.
- No other scenarios matched <u>both</u> observations.
 - Half-life criteria: 10 years +/- 25%

Summary

- 1. We can use process-oriented NAPL depletion models when architecture well defined
 - Predict relative timeframes for natural and enhanced dissolution
 - Interpretive tool improve our understanding
- 2. When architecture has higher uncertainty but still relatively well understood may be able to use model as forensic tool
 - Evaluate range of potential architectures
 - Identify data gaps
- 3. Multiple goals needed to calibrate a NAPL depletion model

Supplemental Slides

Fresh DNAPL Source Zone

Ganglia (residual NAPL)

Timeframe: Years

Pools (free phase NAPL)

Timeframe: Decades +

Source: Schwille, 1988

Prioritizing Treatment Based on Mass Discharge

Q: What is ATTAINABLE Source Strength Reduction?

Grant R. Carey

Edward A. McBean

Stan Feenstra

Grant R. Carey

Source: Carey et al., 2014

Source: Carey et al., 2014

Source: Carey et al., 2014

NAPL Saturation vs. Depth in a DNAPL Pool $(K_{sat}=10^{-2} \text{ cm/s})$

Vertical distribution of DNAPL in pool – above calculations based on Eq. 3.18 in McWhorter and Kueper (1996), and assume P_c =0 at the top of the pool.

Estimating Mass: Mass Discharge Method

Graph modified from Brusseau et al. (2011)

Estimating Mass: Mass Discharge Method

Estimating initial mass (M_o) in source zone (based on Newell et al., 2005):

$$M_o = Md_o / \lambda_{Md}$$
 [M_o in kilograms, Md_o in kg/y, and λ_{Md} in y⁻¹.]

Example calculation for Tuscon Airport Site:

$$M_o = (660 \text{ kg/y}) / (0.092 \text{ y}^{-1})$$

= 7,164 kg ~ Minimum NAPL mass in subsurface

Calculation assumes uniform decline rate, and based on readily-accessible NAPL mass.

May underestimate mass in pool-dominated source zones.