Section 8.a

Modeling Leachate Natural Attenuation

Vejen Landfill, Vejen, Denmark

Presented by

Grant R. Carey

Environmental Software Solutions Ottawa, Ontario, Canada

Overview

- landfill MNA a new perspective
- detailed case study
 - Vejen landfill site leachate natural attenuation
- BioRedox reaction schemes for modeling:
 - Cr(VI) attenuation
 - permeable reactive barriers (PRBs)
 - ORC for bioremediation of BTEX and MTBE

- researchers studying leachate natural attenuation since the 1970's
- older municipal landfills
 - typically unlined, uncovered for decades
 - organic solvents discarded with refuse
 - biodegradation in landfill
 - bioattenuation of leachate plumes below LF
 - sometimes natural attenuation has effectively mitigated plume migration for decades

- favorable conditions for biostabilization
 - refuse: moisture, high temp., rich in OM
 - aquifer:
 - organic-rich leachate
 - sequential anaerobic-aerobic zones
- remediation of old municipal landfills
 - permeable caps --> bioreactor
 - "biofilter" caps methanotrophic co-metabolism
 - filter out VOCs in landfill gas
 - destroy pollutants through biodegradation
 - continued bioattenuation of leachate below landfill

- remediation of old municipal landfills
 - − low-permeability caps --> entombment
 - contain pollutants for hundreds of years
 - technology lifespan uncertain
- movement towards allowing LF MNA in some cases
 - long-term monitoring critical
 - integrated processes between components:
 - cap --> landfill --> aquifer

- may need predictive tool to assess longterm effectiveness of landfill MNA
 - integrated remediation alternatives
 - landfill caps
 - landfill gas collection
 - natural attenuation or enhanced bio in groundwater
- reactive transport models
 - insight into effects of integrated technologies

Vejen Landfill Site

- Vejen, Denmark
- unlined landfill over shallow aquifer
- stable leachate plume
- extensive redox zone delineation (t=15 yrs)
- Thomas Christensen et al. (Technical University of Denmark)
 - landfill hydrology
 - hydrogeology, biogeochemistry in aquifer

Vejen Landfill Site

- Monitoring program:
 - 9 borings along a transect (370 m long)
 - 13 to 31 samples collected from each boring (0.5 meter intervals)
 - 10 cm-long iron screens fitted onto 1-inch iron pipes
 - additional borings placed within 130 meters of landfill
 - temporal fluctuations in redox parameters

Conceptual Model

- homogeneous shallow aquifer
- leachate source model (TOC)
- groundwater velocity: 500 to 650 ft/year
- 2D cross-section model
 - groundwater flow: MODFLOW
 - solute transport: BioRedox

Conceptual Model

- *BioRedox* represents:
 - leachate source
 - TOC oxidation
 - electron acceptor reduction (O₂, NO₃, Fe(OH)₃,
 SO₄, and CO₂)

Redox Zones in Groundwater

Source: Lyngkilde and Christensen, 1992

Model Domain

Boundary Conditions

Solute Properties

	Molecular Weight	K_{oc}	Units of	Boundary and Initial Conditions			
Solute	(g/mol)	(mL/g)	Concentration	C_{IN}	C_{RCH}	C_{LF}	C(x,t=0)
TOC	12	0	mg/L	0	0	(a)	0
PCE	166	364	ug/L	0	0	250	0
TCE	131.5	126	ug/L	0	0	250	0
DCE	97	49	ug/L	0	0	250	0
Vinyl Chloride	62.5	57	ug/L	0	0	250	0
Oxygen	32	0	mg/L	7	7	0	7
Nitrate	62	0	mg/L	25	25	0	25
Ferric Hydroxide	55.85	N/A	mg/g	N/A	N/A	N/A	5
Sulfate	96.1	0	mg/L	40	40	400	40

⁽a) $C = 14000e^{-0.26t}$, $t \le 10$ years; C = 1040 mg/L, t > 10 years

Solute Reactions

Solute	Type	Half-Reaction
TOC	Oxidation	$CH_2O + H_2O> CO_2 + 4H^+ + 4e^-$
Vinyl Chloride	Oxidation	$CH_2CHC1 + 2H_2O> CH_3COOH + 3H^+ + 3e^-$
Oxygen	Reduction	$O_2 + 4H^+ + 4e^> 2H_2O$
Nitrate	Reduction	$NO3^{-} + 6H^{+} + 5e^{-} -> 0.5N_{2}(g) + 3H_{2}O$
Ferric Hydroxide	Reduction	$Fe(OH)_3(s) + 3H^+ + e^> Fe^{2+} + 3H2O$
Sulfate	Reduction	$SO_4^{2-} + 9H^+ + 8e^> HS^- + 4H_2O$

	Redox Zone Biodegradation Rate				
Organic Solute	CH ₄	SO_4	Fe(III)	NO_3	O_2
TOC	k_{TOC}	k_{TOC}	k_{TOC}	k_{TOC}	k_{TOC}
PCE	k_{RD}	$0.75~k_{RD}$	$0.5 k_{RD}$	0	0
TCE	k_{RD}	$0.75~k_{RD}$	$0.5 k_{RD}$	0	0
DCE	k_{RD}	0	0	0	0
Vinyl Chloride	$0.75~k_{RD}$	0	k_{OXD}	0	k_{OXD}

	k_{TOC}	k_{RD}	k_{OXD}
Scenario	(d ⁻¹)	(d ⁻¹)	(d ⁻¹)
no cap	7.6E-3	7.6E-3	7.6E-3
high-K cap	7.6E-3	7.6E-3	7.6E-3
low-K cap	7.6E-3	1.9E-3	7.6E-3

Redox Zone Visualization

 O_2

VO₂

Fe³⁺ → Fe²⁺

SO4

 $CO_2 \rightarrow CH_4$

 $O_2 = 7 \text{ mg/L}$

 $O_2 = 0.1 \text{ mg/L}$

 $NO_3 = 10 \text{ mg/L}$

 $NO_3 = 0.1 \text{ mg/L}$

 $Fe^{3+} = 0.25 \text{ mg/g}$

 $Fe^{3+} = 0$

 $SO_4 = 25 \text{ mg/L}$

 $SO_4 = 1 \text{ mg/L}$

Unlimited CO_2

Redox Code = 1.0

Redox Code = 2.0

Redox Code = 3.0

Redox Code = 4.0

Redox Code = 5.0

Transient Bioattenuation Capacity

t = 5 years

t = 15 years

Vejen Landfill Comparison

Redox Zone	Observed*	Simulated	
Methanogenic / Sulfate-Reducing	75 metres	100 metres	
Ferrogenic / Manganogenic	250 metres	250 metres	
Nitrate-Reducing	25 metres	5 metres	

^{*} Lyngkilde and Christensen, 1992, J. Contam. Hydrol., 10: 273-289.

Vertical dispersivity = 0.003 m rate = 1.0e-2 per day TOC degrades when TOC > 0

Vertical dispersivity = 0.008 m rate = 7.6e-3 per day TOC degrades when TOC > 0.1 mg/L

Hypothetical CAH Model

Biodegradation Kinetics

	Redox Zone					
	CH₄	SO₄	Fe(III)	NO ₃	O 2	
тос						
PCE						
TCE						
DCE						
VC						

Without Methane Transport:

(CAH concentration contours of 1, 2, 5, 10, 20, 50, and 100 ug/L)

Methane Simulation:

(Methane concentration contours of 0.1, 1, 5, 10, 20, 30, 40, and 50 mg/L)

Methanotrophic Biodegradation:

(CAH concentration contours of 1, 2, 5, 10, 20, 50, and 100 ug/L)

Cap Performance Comparison (t=15 to 30 years)

Cap Performance Comparison

- cap placement (t=15 to 30 years)
- two scenarios:

- Permeable cap: I = 6 in/yr

- Clay Cap: I = 1 in/yr

- compared effects on groundwater impact
 - TCE criteria is 5 ug/L

Clay Cap (t = 17 y)

