Mass Flux/Discharge: DNAPL and Back-Diffusion Dr. Grant R. Carey

gcarey@porewater.com

United States Environmental Protection Agency

NAPL Sites: A Decade of Reflection

Einerson and MacKay (2001) – Classic paper on mass flux and discharge.

Environmental Protection

1

Mass Flux / Mass Discharge

Mass discharge affects plume length, risk.

Easily estimated with pumping wells.

Example: If need 90% reduction in risk, then goal is 90% reduction in mass discharge from source.

Outline

1. Concepts

- Mass flux / Mass discharge
- DNAPL architecture
- Back-diffusion
- 2. Site Characterization Methods
- 3. Case Studies
- 4. Appendices

CONCEPTS

1.1 MASS FLUX / DISCHARGE

Mass Discharge = Source / Plume Strength

5c

Source Strength Affects Plume Length

Site A: Source Strength = 30 kg/y

Site B: Source Strength = 10 kg/y

Note: all other conditions are equal for the two sites.

Mass Discharge Example

Biodegradation occurring along flowpath.

Mass Discharge Example

Frequency of Sites with VOC/SVOC Mass Discharge Ranges

United States Environmental Protection Agency

Mass Discharge Uses at NAPL Sites

Focus remediation – high mass flux zones

Mass Discharge Uses at NAPL Sites

♦ Focus remediation – high mass flux

Prioritize - multiple zones or sites

Mass Discharge Uses at NAPL Sites Focus remediation – high mass flux Prioritize - multiple zones or sites Interim remedial goal Case Studies Section 3.1, and Risk reduction goal Carey, McBean, and Feenstra (2014b) MdR Interval Mean MdR 105x EISB: (20x to 556x)ISCO: (4x to 110x) 21xThermal: (6x to 150x)31x

MdR = *Mass discharge reduction*

24th Annual NARPM Training Program

10c

Mass Discharge Uses at NAPL Sites

Focus remediation – high mass flux

- Prioritize multiple zones or sites
- Interim remedial goal
 - Risk reduction goal
 - Empirical databases What's attainable?
- Relative timeframes
- Plume response to treatment
- Performance monitoring

CONCEPTS

1.2 DNAPL TRENDS

Residual NAPL (Ganglia)

DNAPL Ganglia (singlets)

Residual NAPL

- Small
- Discontinuous
- Immobile

Source: Schwille, 1988

NAPL Pool (Free Phase)

Source: Schwille, 1988

NAPL Pools

- Above low-K soil
- Horizontal NAPL layer
- Large mass

NAPL Pool (Free Phase)

Source: Schwille, 1988

NAPL below pool surface is generally not available to groundwater flow.

NAPL Pool (Free Phase)

Source: Schwille, 1988

Fresh DNAPL Source Zone

Ganglia (residual NAPL)

Timeframe: Years

Pools (free phase NAPL)

Timeframe: Decades +

Source: Schwille, 1988

Concentration Profile Above Pool

Johnson and Pankow, 1992

Plume Thickness above a DNAPL Pool

High intensity plumes over 1 to 6 inches above silt/clay layers.

Surface Discharge from a DNAPL Pool

$$Md_{surf} = \left(2L_p W_p(0.001 \ C_{sol}) \sqrt{\frac{q_x}{\pi L_p}}\right) \sqrt{\alpha_{TV} q_x + \theta_t \tau D_o}$$

 $\begin{aligned} Md_{surf} &= \text{surface discharge (kg/y)} \\ L_p &= \text{pool length (m)} \\ W_p &= \text{pool width (m)} \\ C_{sol} &= \text{solubility (mg/L)} \\ q_x &= \text{specific discharge (m^3/m^2/y)} \\ \alpha_{TV} &= \text{transverse dispersivity (m)} \\ \theta_t &= \text{total porosity} \\ \tau &= \text{tortuosity coefficient} \end{aligned}$

 D_o = free-water diffusion coefficient (m²/y)

Md proportional to:

- GW velocity
- Solubility
- Pool length, width

Surface Discharge from a DNAPL Pool

Solubility

1,2-DCA:	8,500 mg/L
TCE:	1,400 mg/L
PCE:	200 mg/L

Higher C → Higher Md Faster NAPL depletion

Md proportional to:

- GW velocity
- Solubility
- Pool length, width

Source Mass Flux - Guilbeault et al., 2005

If we can see where the mass is coming from, we can focus remediation.

Data indicate multiple, thin DNAPL layers present, several meters wide

EPA United States Environmental Protection Agency

24th Annual NARPM Training Program

20c

24th Annual NARPM Training Program

20d

Mass Discharge Trend with Time

Fresh Source

Modified from Parker et al., 2003

Mass discharge from source zone (kg/y)

United States Environmental Protection Agency

Mass Discharge Trend with Time

Typical source zone mass discharge = 1 to 100 kg/year

Aged Source

24th Annual NARPM Training Program

23a

Mass Discharge Trend with Time

Typical source zone mass discharge = 1 to 100 kg/year

Aged Source

Naturall-Occurring Source Strength Decline at Tuscon Airport Site

Mass discharge estimates based on pumping wells near source zones.

Modified from Brusseau et al. (2011)

Estimating Mass: Mass Discharge Method

Estimating initial mass (M_o) in source zone (based on Newell et al., 2005):

 $M_o = Md_o / \lambda_{Md}$ [*M_o* in kilograms, *Md_o* in kg/y, and λ_{Md} in y⁻¹.]

Estimating Mass: Mass Discharge Method

Estimating initial mass (M_o) in source zone (based on Newell et al., 2005):

 $M_o = Md_o / \lambda_{Md}$ [*M_o* in kilograms, *Md_o* in kg/y, and λ_{Md} in y⁻¹.]

Example calculation for Tuscon Airport Site:

 $M_o = (660 \text{ kg/y}) / (0.092 \text{ y}^{-1})$ = 7,164 kg ~ <u>Minimum NAPL mass in subsurface</u>

(Readily-accessible NAPL)

Calculation assumes uniform decline rate, and is based on readily-accessible NAPL mass.

May underestimate mass in pool-dominated source zones.

Multicomponent DNAPL Dissolution

More soluble compounds preferentially depleted

Less soluble compounds persist for longer time

Multicomponent DNAPL Dissolution

- More soluble compounds preferentially depleted
- Less soluble compounds persist for longer time
- Evidenced by trends in dissolved concentrations downgradient of source zone
 - Declining conc. for more soluble compounds
 - Due to declining mole fraction in weathered DNAPL
 - Increasing conc. for less soluble compounds, as mole fraction (and effective solubility) increase over time

Emplaced Source Experiment – Borden, Ontario (Rivett and Feenstra, 2005)

Emplaced Source Experiment Model

- Mechanisms for declining source strength:
 - 1. Reduction in effective solubility (TCM)
 - 2. Intra-source bypassing i.e. preferential channeling

Customized for 3-component DNAPL

Carey et al. (2016b)

Calculation of apparent f_{avg} versus time with exponential regression models for TCM, TCE, and PCE in the Emplaced Source experiment

United States Environmental Protection Agency

Enhanced NAPL Depletion and Mass Discharge Decline

- Enhanced Dissolution
 - Enhanced In-Situ Bioremediation (EISB)
 - In-Situ Chemical Oxidation (ISCO)
 - Strategic Pump-and-Treat

Enhanced Volatilization – Thermal, SVE

M	ean MdR	MdR Interval
EISB:	105x	(20x to 556x)
ISCO:	21x	(4x to 110x)
Thermal:	<mark>31x</mark>	(6x to 150x)
Complex sites		

Chu et al. (2003) EISB Model Results

<u>Case 1:</u>

- Low electron donor concentration
- Biofilm grew away from NAPLwater interface
- Less effective dissolution enhancement
- Created no-flow zone above NAPL

Biofilm Stagnant water DNAPL Pool

<u>Case 2:</u>

- Unlimited electron donor
- Biofilm grew adjacent to NAPLwater interface
- Most effective enhancement due to maximum concentration gradient

Modified from Chu et al. (2003)

Sleep et al. (2006) DNAPL EISB Study

EISB in Lab Experiment

EPA United States Environmental Protection Agency

24th Annual NARPM Training Program

1.3 BACK-DIFFUSION TRENDS

CONCEPTS

Conceptual Model of Forward Diffusion

DNAPL = Primary Source

Conceptual Model of Back-Diffusion

Factors Influencing Remediation Timeframe

United States Environmental Protection Agency

DNAPL Source Zone

DNAPL Source Zone

Case Study – Florida Site

TVOC Trend After Source Containment

2-D Model Grid

200 columns, 158 rows (layers) Minimum grid spacing: $\Delta z = 1.25$ cm, $\Delta x = 0.5$ m Run-time = 45 minutes for 85-y simulation (Δt = 0.24 d) 10 v = 130 ft/y8 $\alpha_{tv} = 1.5 \text{ mm}$ 2-inch thick TCE pool Elevation (ft) 6 Clay layer thickness = 8 inches, foc = 0.5%4v = 65 ft/y $\alpha_{tv} = 1.5 \text{ mm}$ 2-0 10 20 30 40 50 60 70 80 90 0 100 Distance (m) Carey et al. (2015) Inited States

ronmental Protection

24th Annual NARPM Training Program

43

Simulated TCE After Source Removal

Environmental Protection

Remediation Timeframe Sensitivity Analysis

See Appendix A

Back-Diffusion Example

1. Numerical model - minimum vertical grid spacing: 1.25 cm

- 2. NAPL source 1955 to 2015, then depleted.
- 3. Model run for 100 years after source depletion (to 2115).

Profile Below DNAPL: Forward-Diffusion

Environmental Protection

24th Annual NARPM Training Program

48

Profile Below DNAPL: Back-Diffusion

Back-Diffusion Example – Case 1: Minimal Attenuation Along Flowpath

United States

aencv

Environmental Protection

50

Back-Diffusion Example – Case 1: Minimal Attenuation Along Flowpath

Environmental Protection

aencv

Environmental Protection

aencv

24th Annual NARPM Training Program

Environmental Protection

gency

24th Annual NARPM Training Program

Environmental Protection

gency

Environmental Protection

aencv

Environmental Protection

aencv

Environmental Protection

aencv

Environmental Protection

aencv

24th Annual NARPM Training Program

Environmental Protection

aencv

24th Annual NARPM Training Program

Remediation Timeframe vs. Contact Time

Integrated Source-Plume Management

Recognize potential limitations in:

- DNAPL treatment
 - Attainable, interim reduction in mass discharge
 - Interim goal: Transition to passive source treatment?
- Plume restoration (back-diffusion)
 - Characterize mass stored in silts/clays, and time to deplete once source treated or contained
 - Plume area larger than source governs timeframe

Initial Framework for DNAPL Remedy Evaluation

- 1. Site characterization
 - DNAPL architecture ganglia vs. pools
 - Mass discharge (Md) history
 - Potential for back-diffusion
- Define attainable interim goals for DNAPL source zone e.g. Mass discharge reduction?
- 3. Evaluate back-diffusion timeframe in plume
- 4. Predict time to attain interim goals for DNAPL treatment, and targets for plume strength reduction

2. SITE CHARACTERIZATION

Conceptual Model – Aged Source Zones

Pool / layer-dominated

- Particularly if highly heterogeneous geology
- Some thin pools may have depleted so average S_n is below residual saturation threshold
 - Horizontal layers of residual DNAPL
- Thin, high intensity GW plumes
- Persistent source strength with slow declines at discrete elevations

Example of DNAPL Pool Line of Evidence

Other lines of Evidence for DNAPLS Pools

- Visible NAPL in wells (free phase)
- NAPL seeping from soil cores
- Persistently high concentrations in transmissive formation (>1% solubility in monitoring wells)
 - Slow source strength decline rate
- Heterogeneous or layered geology in aged NAPL source zone
- Thin aqueous plumes downgradient of source zone (pools or horizontal layers of residual DNAPL)
- Very high soil concentrations (>> partitioning threshold)
- CPT-MIP profiles
- Parker et al. (2003) core drainage method

Five Methods for Mass Discharge

ITRC, 2016

- Method 1: Transect Method
- Method 2: Well Capture/Pumping Methods
- Method 3: Passive Flux Meters
- Method 4: Using Existing Data (Isocontours)
- Method 5: Solute Transport Models

Well Capture Mass Discharge Calculation

Einarson and MacKay, 2001; ITRC, 2016

Nichols and Roth, 2004

Figure 4-8 Measure Q, C_{well} from well Contaminant Source Calculate mass discharge Groundwater Flow Line based on total capture of Dissolved plume by pumping system Contaminant Plume Supply $M_d = Q \times C_{well}$ Well Capture Zone = Mass discharge Md (grams per day) C_{well} = concentration in recovery well effluent (grams per liter) liters grams gram Х = Well pumping rate Q liter day day (liters per day)

United States Environmental Protection Agency

Hypothetical Example of Regional Supply Wells

Water pumped to treatment plant.

Hypothetical Concentrations and Pumping Rates

Mass Discharge (Md)

Transect Method

General trends

- Closer spacing at source, wider downgradient
- 5-10 ft screens vs. multilevel samplers
 - % of transect area being monitored
 - Mass discharge vs. mass flux monitoring
 - Value of pre-characterization work (e.g. MIP)

NAPL Depletion Model (NDM)

NAPL SUB-ZONE (i.e. layer)

NAPL Depletion Model (NDM)

NAPL Sub-zone

- Length
- Width
- Thickness
- C_{eff} , S_{no} , ρ_n
- K_{sat}
- Gradient
- Total porosity
- Column Δx
- Temporal discretization

Md_{surf}

- Tortuosity
- D_o
- α_{tv}
- U/G sub-zone?
- f_{surf} multiplier
 - = 1 or 2

Md_{thru}

- Column application (first or uniform to all)
- Efficiency factor
- Optional Pool $S_n(z)$, $k_{rw}(z)$
 - Van Genuchten α_{aw}, n
 - σ_{nw}, σ_{aw}
 - S_{wr}, S_m
 - Layer Δz
- Residual layer dilution factor f_{thru}(t)
- U/G sub-zone?

- f_{ed} (enhanced dissolution factor)
- f_{grad} (enhanced hydraulic gradient)
- $\tilde{f_{bio}}$ (enhanced biodegradation)
- Daughter product ratios

Estimating Input Parameters Based on K

Reference	Empirical Relationship (<i>K</i> in m/s)	
Carey et al., 2016a	τ = 0.60 K ^{0.030}	(i)
	$\theta_t = 0.30 \text{ K}^{-0.026}$	(ii)
Carey et al., 2016c	$\theta_{\rm e}$ = 0.41 K $^{0.064}$, K \leq 1x10 ⁻² m/s	(iii)
	$\theta_{\rm e} = (0.29 \text{ K}^{-0.026}) - 0.03, \text{ K} > 1 \times 10^{-2} \text{ r}$	n (is)
Carey et al., 2016c	$\alpha_{TV} = 0.08 \text{ K}^{-0.16}, v \le v_c$	(V)
	$\alpha_{TV} = 0.08 \text{ K}^{-0.16} (v_c/v)^{0.5}, v > v_c$	(vi)
Carey et al., 2016e	$\alpha_{aw} = 0.112 (100 \text{ K})^{0.211}$	(vii)
	$n = 13.14 (100 \text{ K})^{0.246} \text{K} \ge 1 \times 10-4 \text{ m/s}$	(viii)
	$S_{wr} = 0.015 (100 \text{ K})^{-0.218}$	(ix)

Example No. 1: Mixed Source Zone

 Mixed source zone – encompasses soil volume with DNAPL pools and/or residual DNAPL, and includes soil where DNAPL is absent Length (L)

nited States

ental Protection

Example No. 2: Defined NAPL Layers

MdR vs. MR for Single & Multiple Pools

CASE STUDIES

3.1 PREDICTING Md REDUCTION

Empirical-Based Attainable Goals

- Objective: To estimate attainable source strength (Md) reduction goal for DNAPL zones at:
 - Complex sites
 - More simple sites
- Technologies: EISB, ISCO, Thermal

Empirical Databases

- McGuire et al. (2006) concentration reduction at individual wells for EISB and ISCO at DNAPL sites
 - Some wells had low starting concentrations
 - Median reduction of all wells
- SERDP/ESTCP TEST
 - Median concentration reduction at individual wells
- Stroo et al. (2012):
 - 1 to 2 orders-of-magnitude (OOM) reduction

Md Reduction (MdR) at DNAPL Sites

MdR = Pre-treatment Md Post-treatment Md

Md = *mass discharge (source strength)*

MdR = $5x \rightarrow 80\%$ reduction MdR = $10x \rightarrow 90\%$ reduction MdR = $20x \rightarrow 95\%$ reduction MdR = $100x \rightarrow 99\%$ reduction MdR = $1,000x \rightarrow 99.9\%$ reduction

MdR better indication of order-of-magnitude change than % reduction

Md Reduction (MdR) at DNAPL Sites

- Started with McGuire et al. (2006) dataset for EISB and ISCO
- Filtered out wells with C < 1% solubility (less likely)</p> to be directly downgradient of source)

 \rightarrow Focus on "Source Wells" trends

 Calculated site MdR based on mean of all "Source" Well" concentration trends

 Calculated mean and confidence interval of all site MdR (log-normal)

> Note: Medians from other studies ignore influence of sites with poor and excellent performance.

Thermal Studies based on Triplett-Kingston (2008)

Triplett Kingston (2008) Site ID (Table 5.5)	Pre-Treatment Source Strength (kg/y)	Post-Treatment Source Strength (kg/y)	Ratio of Pre- to Post-Treatment Source Strength, MdR	MdR%	Geometric Mean Site MdR
Site 1	51.5	0.187	275.4	99.6%	275.4
Site 2	59.9	4.94 / 20.7	4.7	78.6%	4.7
Site 3	48	0.125	384.0	99.7%	384.0
Site 4	31.8	2.11	15.1	93.4%	15.1
Site 5	684	82.3	8.3	88.0%	8.3
Site 6	4.64	0.0734	63.2	98.4%	63.2
Site 7	9.42 4.93	0.0267 1.6	352.8 3.1	99.7% 67.5%	33.0
Site 8	1.71 2.43	0.595 0.969	2.9 2.5	65.2% 60.1%	2.7
Site 9	0.40	0.03	13.1	92.4%	13.1
Site 10	0.0192 2.86E-04	1.78E-07 1.07E-07	107,865.2 2,672.9	100.0% 100.0%	16,979.8
Site 11	0.0968	0.0607	1.6	37.3%	1.6
Site 12	1.24	0.0535	23.2	95.7%	23.2
Site 13	9.27 7.35	0.017 0.0163	545.3 450.9	99.8% 99.8%	495.9
Site 14	1.31	2.84	0.5	-116.8%	0.5

Carey et al. (2014b)

MdR Mean and Confidence Interval

Complex sites:Use low end of confidence Interval

Carey et al. (2014b)

Average Mass Discharge Reduction

Carey et al. (2014b)

24th Annual NARPM Training Program

3.2 CONNECTICUT SITE

CASE STUDIES
Connecticut Site (Chapman & Parker, 2005)

89

Case Study: Beth Parker et al. (2003)

- Connecticut site
- Large DNAPL source zone
 - Bottom of sand aquifer, above aquitard
- Multiple lines of evidence
 - Visual inspection
 - Soil samples close vertical spacing
 - Partitioning threshold, S_n, & layer thickness
 - Dye tests (Sudan IV)
 - Drainable core technique \rightarrow Pool thickness

1996/97 Source Zone

Field Data summarized in Stewart (2002) and Parker et al. (2003)

United States Environmental Protection

DNAPL Sub-Zones

Carey et al. (2016e)

NAPL Depletion Model (NDM): Mass Discharge-Based

Carey et al. (2014a)

NAPL Depletion Model (NDM): Mass Discharge-Based

Model Validation Goals

- DNAPL mass in simplified source zone consistent with Chapman and Parker (2005).
- 2. Simulate Initial (1994) Mass discharge estimated to be 360 to 720 kg/y.
- 3. Predicted mass discharge decline half-life estimated to be about 10 years (Chapman and Parker, 2005).

NDM Simulation Results

Simulated DNAPL mass = 4,250 kg

- Chapman and Parker (2005) estimated 5,000 to 20,000 kg
- Our simplified source zone ignored several large areas with thicker DNAPL
 - Limited contribution to overall mass discharge
 - Simulated DNAPL mass consistent with observed on that basis

NDM Simulation Results

Simulated 1994 Mass Discharge

Modeled vs. Estimated Md Half-Life

Md = *Mass discharge*

Modeled Relative Depletion Timeframes

DNAPL Architecture Sensitivity Analysis

Varied NAPL architecture and re-ran model – any other scenarios that match <u>1994 Md</u> and <u>half-life</u>?

- Length / 2
- Width / 2
- Uniform thickness of 4", 8", or 1 ft
 - a) All pooled DNAPL; or
 - b) All residual DNAPL
- Zero flux through all DNAPL sub-zones
- Type 1 residual zone is suspended above pool.
- No other scenarios matched <u>both</u> observations.
 - Half-life criteria: 10 years +/- 25%

Case Study Summary

- 1. We can use process-oriented NAPL depletion models when architecture well defined
 - Predict relative timeframes for natural and enhanced dissolution
 - Interpretive tool improve our understanding
- 2. When architecture has higher uncertainty but still relatively well understood may be able to use model as forensic tool
 - Evaluate range of potential architectures
 - Identify data gaps
- 3. Multiple goals needed to calibrate a NAPL depletion model

Section 4
SUMMARY

Summary

Mass flux / Mass discharge

- Improved site understanding, CSM
- Improved remedial efficiency
- Pumping well data \rightarrow easy Md estimates
- NAPL Source Zones
 - Aged sites mainly NAPL layers remaining
 - Exponential Md decline trends
 - Layer depletion, preferential channeling, weathering
 - Md used to predict interim goals and relative timeframes, focus remedy, monitor performance, etc.

Summary

Back-diffusion

- NAPL \rightarrow Primary source
- Diss. Mass in silt/clay \rightarrow Secondary source
 - May extend timeframe by decades to centuries
- Large area at some sites
 - Plume size >> Primary source zone
- Site characterization soil sampling, modeling
- Integrated framework for long-term site management (source + plume)

Questions?

Grant Carey Porewater Solutions

613-270-9458 gcarey@porewater.com www.porewater.com

Appendix A

CASE STUDY OF BACK-DIFFUSION (FLORIDA)

United States Environmental Protection Agency

Modeling Challenges

- <u>Analytical solutions</u> not available for:
 - Thin silt/clay lenses
 - Enhanced degradation rates
- Numerical models
 - Small grid spacing, time steps
 - Prohibitive for 3-D models
- ISR-MT3DMS: new approach

Carey, Van Geel, and Murphy (1999) nnual NARPM Training Program

Carey, McBean, and Feenstra (2014a,b; 2015a,b,c)

Training Program

111

ironmental Protection

Case Study – Florida Site

TVOC Trend After Source Containment

Modified from Parker et al., 2008 24th Annual NARPM Training Program

2-D Model Grid

200 columns, 158 rows (layers) Minimum grid spacing: $\Delta z = 1.25$ cm, $\Delta x = 0.5$ m Run-time = 45 minutes for 85-y simulation (Δt = 0.24 d) 10 v = 130 ft/y8 $\alpha_{tv} = 1.5 \text{ mm}$ 2-inch thick TCE pool Elevation (ft) 6 Clay layer thickness = 0.2 m, foc = 0.5%4v = 65 ft/y $\alpha_{tv} = 1.5 \text{ mm}$ 2-0 10 20 30 40 50 60 70 90 80 0 100 Distance (m) Carey et al. (2015) Inited States 24th Annual NARPM Training Program

ronmental Protection

115

Source Characteristics

United States Environmental Protection Agency

Simulated TCE After Source Removal

117

a) Biodegradation Half-life in Clay Layer b) Source Concentration (mg/L)

Florida Site Conclusions

<u>Characteristics with largest influence:</u>

- Low-K layer thickness
- Retardation coefficient (f_{oc})
- Groundwater velocity

- *f_{oc}* is critical for:
- 1. Mass stored in silt/clay
- 2. Soil \rightarrow GW concernitations

<u>Characteristics with moderate sensitivity:</u>

• α_{TV} , silt/clay length, biodegradation half-life

<u>Back-diffusion timeframe least sensitive to:</u>

• Solubility, NAPL contact time, τ , well screen length

Appendix B

CASE STUDY OF LNAPL DEPLETION MODEL (GERMANY)

United States Environmental Protection Agency

Modeling LNAPL Depletion at a Former Xylene Processing Facility (Germany)

by Grant R. Carey, Ph.D. Porewater Solutions Ottawa, Ontario, Canada Originally presented at CleanUp 2015 (Melbourne, Australia)

www.porewater.com

gcarey@porewater.com

LNAPL Depletion Modeling

based on average velocity across bottom surface area (v_{bot})

nited States

onmental Protection

Case study example

United States Environmental Protection

Transverse Vertical Dispersivity (LE) vs. K

Former Xylene Processing Facility (Germany)

Modified from Schafer and Therrien (1995)

Estimated Mass Discharge Based on Schafer and Therrien (1995)

Modified from Schafer and Therrien (1995)

NAPL Depletion Model (NDM): Sub-zone Mass Discharge

Carey et al. (2014a)

Email: gcarey@porewater.com

Download after Sep. 30th: <u>www.porewater.com</u>

United States Environmental Protection

NAPL Depletion Model (NDM): Sub-zone Mass Discharge

Carey et al. (2014a)

Saturated Source Zone Thickness vs. Time

Modified from Schafer and Therrien (1995)

Note: Effective thickness of the LNAPL source zone was determined based on an assumed source zone bottom elevation of 19.75 m, and the fluctuating water table elevation. t=0 corresponds to May 1, 1988.

Modeled and Estimated Mass Discharge

Notes:

- 1. Groundwater extraction system started at t=0.
- 2. Md = mass discharge.
- 3. Range in calculated total Md is based on the potential difference between including and excluding xylene biodegradation under manganogenesis, ferrogenesis, and sulfate reduction.

Remediation Timeframe Analysis

Goal Evaluate influence of Q on depletion timeframe Approach Assume constant, average water table elevation Source zone 0.85 m thick below water table

- Evaluate influence of increasing Q on GW velocity
 - Model LNAPL depletion for each scenario

Velocity vs. Pumping Rate

Note: Pumping rates at extraction wells R41.2, R41.4, R41.6, and R41.8 were simulated to be constant for all scenarios where the R41.3 well pumping rate was greater than zero.

Strategic Pump-and-Treat

Summary

- Transverse dispersivity based on K
- Model matched estimated mass discharge
 - Without any input calibration
- MNA may be appropriate if no receptors at risk
 - Increased pumping rate at R41.3
 - Small incremental cost Strategic Pump-and-Treat
 - Large reduction in remediation timeframe

Appendix C SUPPLEMENTAL SLIDES

Mass Discharge and Concentration

- Concentration-based approach may not account for important site characteristics
 - Large vs. small releases

ITRC, 2016

Pumping rate at the receptor well

Case A: Large Release High Max. Conc. and High Md

Case B: Small Release High Max. Conc. and Low Md

KEY Evaluation of mass discharge (M_d) can increase understanding of site and be an important component of the site conceptual model

Mass Flux Can Be Highly Variable

Mass Discharge vs. Traditional Approach

Traditional Approach: Measure existing plume **concentrations** to assess

- Impact on receptor wells
- Natural attenuation rates
- Remedial options

Mass Discharge Approach: Define rate of mass discharge across specified crosssectional areas of plume to assess

- Impact on receptor wells
- Natural attenuation rates
- Remedial options

Mass discharge approach <u>sometimes</u> offers a better understanding of potential risks and attenuation rates, and can lead to sounder remediation strategies.

POE well M_d = g/day POE well conc = ?