

ISR-MT3DMS for Modeling Back-Diffusion Timeframe

Grant R. Carey President Porewater Solutions

© 2015 Porewater Solutions

Forward Diffusion

Back-Diffusion

Remediation Timeframe?

Modeling Challenges

- <u>Analytical solutions</u> not available for:
 - Thin silt/clay lenses

- Enhanced degradation rates
- <u>Numerical models</u>
 - Small grid spacing, time steps
 - Prohibitive for 3-D models
- ISR-MT3DMS: new approach

Introduction

- Case Study #1 Model limitations
- ISR-MT3DMS overview
- **Case Study #2** Florida site (thin clay)
 - Model input estimation
 - ISR-MT3DMS proof of concept, verification
 - Timeframe sensitivity analysis

Case Study #1 – Ontario Site

Acknowledgement:

Rick McGregor, President InSitu Remediation Services Limited

rickm@IRSL.ca

Section K-K'

Phase I: Waterloo Emitters (t=3y)

Case 2: PHC Koc = 50,000 mL/g

Electron Donors:

GRO, DRO, Fe(II)

11

<u>Electron Acceptors:</u>

DO, Fe(III)_s

Reactions:

14

13 12 11

10

16

15

14

13 12

11 10 9

8

- Instantaneous or first-order
- Reductive dissolution

Phase II model:

- Hydrogen peroxide •
- CaPO
- GRO/DRO Conc. •
- **Diffusion into silt**

MT3DMS v5.3

Dr. Chunmiao Zheng

PUBLIC DOMAIN

Carey, Van Geel, and Murphy (1999)

Carey, Van Geel, and Murphy (1999)

THE FUTURE OF REMEDIATION TECHNOLOG

Global Model Domain

Cross-Section in Global Model (3 layers)¹⁸

Sand Seam #2

Global model domain

Local Model Domains for Silt (1-D Diffusion)

Silt layer is inactive to transport in global model.

Case Study #2 – Florida Site

Site Characteristics

- Beach sand aquifer
- Continuous, thin clay layer across site
- Other discontinuous, thin silt/clay layers
- Multiple, thin suspended DNAPL layers in source zone

Approx. source zone extent

REALECTION TECHNOLOGY SUMMIT

Source: Modified from Parker et al., 2008

TVOC Trend at MW-2B

2-D Model Grid

200 columns, 158 rows (layers) Minimum grid spacing: $\Delta z = 1.25$ cm, $\Delta x = 0.5$ m Run-time = 45 minutes for 85-y simulation ($\Delta t = 0.24$ d)

2-D Model Grid

2-D Model: Horizontal Wells

RTF versus clay layer length? (C < 0.005 mg/L)

Multiple Well Screen Lengths

Influence of screen length on remediation timeframe?

Well lengths = 0.1, 1.5, and 3 m

Tortuosity Coefficient

τ proportional to θ_{e} (not θ_{t})

Carey, McBean, and Feenstra, 2015d

Transverse Dispersivity (LE) vs. K²⁸

Note – results not shown for glass bead studies. LE = Local equilibrium.

Carey, McBean, and Feenstra, 2015e

Dispersivity Influence on Remediation Timeframe

X = 50 m, Well screen length = 3 m

Transverse Dispersivity vs. Velocity

Re-calculated dispersivity based on Seagren et al., 1999 experiments.

$$\alpha_{TV} = \alpha_{TV_LE}, v \le vc$$
$$\alpha_{TV} = \alpha_{TV_LE} 0.8 \sqrt{v_c/v}, v > vc$$

Non-equilibrium transverse dispersion

- Klenk and Grathwohl, 2002
- Chiogna et al., 2010

Carey, McBean, and Feenstra, 2015e

Simulated TCE After Source Removal

Local Domain Dispersion

Influence of Mechanical Mixing

- Horizontal velocity above clay increases transverse dispersion and mass flux into/out of clay (3x higher at this site)
- 1-D models or flux calculations typically based on $\rm D_e~(\rm D_m$ assumed to be zero)
 - May substantially underestimate mass flux into and out of clay

Flux =
$$-D_z \theta \Delta C / \Delta x$$

Remediation Timeframe

Remediation Timeframe

Mass balance = 0.04%Mass balance = 0.04%

No Local domains

200 Local domains

Remediation Timeframe

Influence of Thickness and R

Sensitivity Analysis: Length of Clay Layer

 $\rm L_2 \sim 300~ft$

Sensitivity Analysis: Velocity (x=50 m, scrn L=3 m)

Note – ISR-MT3DMS simulation did not consider potential decrease in a_{tv} at higher velocity.

40

Influence of Contact Time (Thin Layer) ⁴¹

Contact time - between DNAPL and clay layer.

Sensitivity Analysis: Well Screen Length

Conclusions

- ISR-MT3DMS Local Domain
 - Proof of concept, verification
- Model inputs: τ and α_{tv}
- Mechanical mixing vs. diffusion
- Back-diffusion in thin layers: RTF most sensitive to v, b, foc

ISR-MT3DMS Next Steps

• On-going development, verification

Demonstration sites (w/reactions) & beta testing

- Short course at Battelle symposium in May 2015
 - NDM and ISR-MT3DMS
 - Beta version release
- GUI Developers
- Target release date: 2016 (FREE)

Questions?

Grant Carey Porewater Solutions

613-270-9458 gcarey@porewater.com

1. Global domain section (example)

2. Inactive transport in clay zone, in global domain.

3. Insert 200 local domains ($\Delta x = 0.5 \text{ m}$, $\Delta z = 1.25 \text{ cm}$).

4. Associate global domain conc. with local domain boundaries.

Local Domain Boundary Conditions

Scenario A – same vertical discretization in local and global domains

Local Domain Boundary Conditions

Scenario B – Global domain has larger vertical grid spacing.

f_{mult} Trends (t = 3 to 85 y)

Narrow range in f_{mult} over x and time – suggests average may be used to define local domain boundary condition with coarser global domain grid spacing (to be confirmed).

Example Applications

Global domain

Local domain

Example Applications

Modeling Goals at Complex Sites

• Improve process understanding

Interpretive Tool

- Optimize remediation performance
- Timeframe range (RTF)
 - Establish realistic expectations

