Site Characteristics Influencing Back-Diffusion

by Grant R. Carey, Ph.D.

Porewater Solutions, Ottawa, Ontario, Canada

Forward Diffusion

Back-Diffusion

Factors Influencing Remediation Timeframe

Modeling Challenges

- <u>Analytical solutions</u> not available for:
 - Thin silt/clay lenses
 - Enhanced degradation rates
- Numerical models
 - Small grid spacing, time steps
 - Prohibitive for 3-D models
- ISR-MT3DMS: new approach

	
-	

In-Situ Remediation (ISR-MT3DMS)

Public domain – available 2016

In-Situ Remediation (ISR-MT3DMS)

Carey, McBean, and Feenstra (2014a,b; 2015a,b,c)

In-Situ Remediation (ISR-MT3DMS)

Collaborative research:

- 1. Dr. Brent Sleep (U. of Toronto); and
- 2. Dr. Beth Parker and Steve Chapman (U. of Guelph)

Large model linked to local 1-D diffusion model(s).

Case Study – Florida Site

TVOC Trend After Source Containment

2-D Model Grid

200 columns, 158 rows (layers) Minimum grid spacing: $\Delta z = 1.25$ cm, $\Delta x = 0.5$ m Run-time = 45 minutes for 85-y simulation ($\Delta t = 0.24$ d)

Source Characteristics

Carey et al. (2015)

Simulated TCE After Source Removal

Carey et al. (2015)

a) Biodegradation Half-life in Clay Layer

b) Source Concentration (mg/L)

Florida Site Conclusions

Characteristics with largest influence:

- Low-K layer thickness
- Retardation coefficient (*f*_{oc})
- Groundwater velocity

- <u>*f*_{oc} is critical for:</u>
- 1. Mass stored in silt/clay
- 2. Soil \rightarrow GW concerntrations
- Characteristics with moderate sensitivity:
 - α_{TV} , silt/clay length, biodegradation half-life

Back-diffusion timeframe least sensitive to:

• Solubility, NAPL contact time, τ , well screen length

Questions?

Grant Carey Porewater Solutions

613-270-9458 gcarey@porewater.com www.porewater.com

Supplemental Slides

General Input Parameters	
NAPL source length, L_p (m)	5
NAPL source thickness, H_p (m)	0.05
TCE solubility, C _{sol} (mg/L)	1100
Free-water diffusion coefficient, <i>D</i> _o (m ² /d)	7.0E-05
Tortuosity coefficient, $ au$ (dim.)	0.33
Effective diffusion coefficient, D_e (m ² /d)	2.3E-05

Unit-specific Input Parameters								
	Upper Sand	Clay Layer	Lower Sand					
Hydraulic conductivity, K (m/d)	4.32	0.001	2.16					
Horizontal hydraulic gradient, <i>i</i> (m/m)	0.01	0.01	0.01					
Porosity, θ (m ³ /m ³)	0.35	0.40	0.35					
Groundwater velocity, v (m/d)	0.12	0.00003	0.06					
Longitudinal dispersivity, α_x (m)	1	0.001	1					
Vertical transverse dispersivity, α_{tv} (m)	0.0015	1.5E-06	0.0015					
Biodegradation half-life (y)	8	8	x					
Fraction of organic carbon, f_{oc} (dim.)	0	0.0049	0					
Dry bulk density, $ ho_b$ (g/mL)	n/a	1.62	n/a					
Organic carbon partitioning coefficient, K _{oc} (mL/g)	126	126	126					
Retardation coefficient, R (dim.)	1.0	3.5	1.0					

(b) Local domain models with $\Delta x_{LD} = 5 \text{ m}$

Conceptual illustration of local domains for two cases: (a) global and local domains have the same horizontal spacing; and (b) local domain has a larger horizontal spacing than the global domain grid.

Comparison of vertical mechanical dispersion (D_m) and effective diffusion coefficient (D_e) magnitudes in each grid cell of a 1-D local domain. Vertical mechanical dispersion is shown to be significant at the top and bottom clay-sand interfaces due to the use of a three-dimensional dispersion tensor and horizontal velocity components at each clay-sand interface. Application of a 1-D diffusion model will result in underestimation of the mass flux between the transmissive zone and clay layer.

Influence of Mechanical Mixing

- Horizontal velocity above clay increases transverse dispersion and mass flux into/out of clay (3x higher at this site)
- 1-D models or flux calculations typically based on D_e (D_m assumed to be zero)
 - May substantially underestimate mass flux into and out of clay

Flux = $-D_z \theta \Delta C / \Delta x$

Simulated monitoring well concentrations at x=5, 25, and 100 m. Solid lines represent the global domain model, dashed lines represent the local domain model with local grid $\Delta x=0.5$ m, and dotted lines represent the local domain model with local grid $\Delta x=5.0$ m.

Simulated remediation timeframe for three model cases: (a) no local domains are used; (b) 200 local domains are used with horizontal spacing of 0.5 m; and (c) 20 local domains are used with horizontal spacing of 5.0 m. Based on monitoring well with L_{screen} =3 m.

Clay layer length (m):	5	10	25	50	75	100	
Well screen length (m):	3	3	3	3	3	3	
Input Parameter Description	Remediation Timeframe (y)						
α_{tv} = 0.5 mm	16.9	20.0	25.7	32.0	36.9	40.9	
α_{tv} = 1.5 mm (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
α_{tv} = 5 mm	12.7	14.5	17.5	20.9	23.5	25.8	
$\alpha_{tv} = 20 \text{ mm}$	11.3	12.5	14.5	16.8	18.6	20.2	
$\tau = 0.25$	17.5	20.0	24.6	29.6	33.5	36.7	
τ = 0.33 (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
$\tau = 0.40$	13.2	15.4	19.4	24.0	27.6	30.6	
<i>R</i> = 1	4.4	5.2	6.7	8.7	10.4	11.9	
R = 3.5 (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
<i>R</i> = 8.7	36.1	41.7	51.6	62.0	69.9	76.3	
Contact time = 90 d	10.9	12.9	16.4	20.2	23.1	25.6	
Contact time = 180 d	11.9	13.9	17.6	21.6	24.7	27.3	
Contact time = 1y	12.9	15.1	18.9	23.1	26.3	29.0	
Contact time = 3y	14.2	16.5	20.5	25.0	28.5	31.4	
Contact time = 10y	14.7	17.0	21.3	26.0	29.6	32.7	
Contact time = 20y	14.7	17.0	21.3	26.0	29.7	32.8	
Contact time = 35y (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
Contact time = 50y	14.8	17.1	21.4	26.1	29.8	32.9	
v _U = 0.04 m/d	26.0	31.2	41.9	54.5	64.7	73.4	
$v_U = 0.12 \text{ m/d} \text{ (base case)}$	14.7	17.1	21.3	26.1	29.8	32.9	
v _U = 0.36 m.d	10.0	11.3	13.3	15.3	16.8	18.0	
<i>H _{clay}</i> = 0.025 m	1.4	1.8	2.7	4.1	5.4	6.6	
<i>H _{clay}</i> = 0.05 m	2.3	2.8	4.1	5.8	7.3	8.7	
<i>H _{clay}</i> = 0.1 m	5.2	6.2	8.3	10.9	13.1	15.0	
H _{clay} = 0.2 m (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
<i>H _{clay}</i> = 0.3 m	28.8	32.8	39.7	46.9	52.3	56.6	
<i>H _{clay}</i> = 0.6 m	92.1	103.5	120.4	136.2	147.4	156.3	
<i>H _{clay}</i> = 1.0 m	204.4	231.4	301.4	337.0	356.2	372.6	
<i>C sol</i> = 200 mg/L	11	13.1	16.9	21.1	24.4	27.2	
<i>C</i> _{sol} = 1,100 mg/L (base case)	14.7	17.1	21.3	26.1	29.8	32.9	
<i>C</i> _{sol} = 8,500 mg/L	19.2	21.8	26.6	31.8	36	39.3	
Clay half-life = infinity (no degradation)	14.7	17.1	21.3	26.1	29.8	32.9	
Clay half-life = 5 y	13.4	15.5	19.2	23.3	26.4	29	
Clay half-life = 1 y	9.9	11.3	13.7	16.2	18.2	19.8	

Sensitivity analysis results. The simulated remediation timeframe corresponds to the time for the concentration in a monitoring well at the downgradient edge of the clay layer to decline below the MCL.

2-D Model: Horizontal Wells

RTF versus clay layer length? (C < 0.005 mg/L)

